
research papers

514 doi:10.1107/S0907444907000844 Acta Cryst. (2007). D63, 514–525

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

CAALIGN: a program for pairwise and multiple
protein-structure alignment

T. J. Oldfield‡

Accelrys Inc., 10188 Telesis Court, Suite 100,

San Diego, CA 92121, USA

‡ Current affiliation: European Bioinformatics

Institute, Wellcome Trust Genome Campus,

Hinxton, Cambridge CB10 1SD, England.

Correspondence e-mail: oldfield@ebi.ac.uk

# 2007 International Union of Crystallography

Printed in Denmark – all rights reserved

Coordinate superposition of proteins provides a structural

basis to protein similarity and therefore complements the

technique of sequence alignment. Methods that carry out

structure alignment are faced with the problem of the large

number of trials necessary to determine the optimal alignment

solution. This article presents a method of carrying out rapid

(subsecond) protein-structure alignment between pairs of

proteins based on a maximal C�-atom superposition. The

algorithm can return alignments of 12 or more residues in

length as multiple non-overlapping solutions of alignment

between a pair of proteins which are independent of the fold

connectivity and secondary-structure content. The algorithm

is equally effective for all protein fold types and can align

proteins containing no secondary-structure elements such as is

the case when searching for common turn structures in

proteins. It has high sensitivity and returns the set of true

positive results before any false positives as judged by SCOP

classification. It can find alignments between topologically

different folds and returns information about sequence

alignment based on structure alignment. Additionally, this

algorithm has been extended to carry out multiple structure

alignment to determine common structures within groups of

proteins, including the nondegenerate set of proteins in the

PDB. The algorithm has been implemented within the

program CAALIGN and this article presents results from

pairwise structure alignment, multiple structure alignment and

the generation of common structure fragments found within

the PDB using multiple structure alignment.
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1. Introduction

The three-dimensional structure of proteins is encoded by a

one-dimensional genome and the function of proteins is

determined by the three-dimensional interaction of residues

localized within a small volume. The classification of the

sequence and structural information is based on the ability to

recognize similarity between the different sequences and

different coordinates. It is apparent that the evolution of

sequence is much more rapid than the evolution of structure

for a particular protein function. This means that the search

for protein similarity to recognize function and homology/

analogy within sequence space requires the analysis of infor-

mation that is often at the limit of the signal to noise. In

general, it is difficult to observe evolutionary context when the

sequence similarity is below 30%. The use of structural simi-

larity to determine function and classification is therefore

desirable.



The rapid comparison of protein structures is useful in many

areas of research. The classification of structures by fold is

essentially a problem of determining the structural similarity

between pairs of proteins. Multiple structure alignment

(MSA) takes this further by identifying common fold and

packing features within a family of proteins; when used on a

nondegenerate list of proteins, it can identify common motifs

recurrent throughout protein-fold space. Structure alignment

(SA) also allows comparative analysis of function within

homologous and analogous proteins and hence of the evolu-

tionary relationships within protein families. Additionally, the

characterization of equivalent residues, particularly around an

active site, can often suggest the reaction mechanism and

function.

SA is not theoretically difficult, but presents a technical

challenge because the search space is so large. In general, it is

necessary to determine both the position and length of

alignment within a pair of structures that have equivalent

residues. The alignment solution may be independent of the

sequential order of the residues and can have multiple inser-

tions and deletions between aligned regions that are not

necessarily topologically related within the sequence.

Previously, the problem has been approached in a number of

ways. Methods have been implemented that are based on the

use of secondary-structure elements (SSEs) to reduce the size

of search space, such as vector alignment (Gibrat et al., 1996)

and the use of clustering (Vriend & Sander, 1991; Mizuguchi

& Go, 1995; Oldfield, 1992), depth-first recursive search

(Kleywegt & Jones, 1997) and graph theory (Mitchell et al.,

1990; Alexandrov, 1996; Grindley et al., 1993; Krissinel &

Henrick, 2004). Methods also exist based on residue alignment

(using coordinates) that use techniques such as dynamic

programming of distance matrices (Orengo & Taylor, 1996;

Subbiah et al., 1993), Monte Carlo simulations (Holm &

Sander, 1993) and combinatorial extension (Shindyalov &

Bourne, 1998). Additionally, the use of human recognition of

fold forms the basis of the SCOP classification (Murzin et al.,

1995). An important issue with regard to structure alignment

is the ever-increasing number of proteins within the PDB

(Berman et al., 2000). Even without the potential products of

structure genomics projects, there has been an exponential

growth in protein structure submissions to the PDB. There-

fore, any method of structure alignment must be fast and

scalable with regard to the number of protein structures and

the size of any one single entry.

The algorithm presented here is independent of the

topology of the protein, allowing the identification of snippets

of similar protein structure that are independent of the

framework and connectivity of the surrounding protein. The

program returns a number of possible different outputs: the

superposed coordinates, the transformation matrix, the

residue-mapping arrays, the sequence alignment determined

from the structure superposition, the percentage of residue

identity, the length of alignment, score, r.m.s.d. and whether

the proteins have the same sequence connectivity. The infor-

mation output by the program is repeated for multiple

occurrences of non-overlapping solutions between a pair of

proteins. The pairwise alignment program is designed to carry

out one-against-many alignments or many-against-many to

form a square symmetric matrix of relationships.

An extension to the basic pairwise alignment from

CAALIGN is MSA. Analogous to multiple sequence align-

ment, the exact solution to MSA is nontrivial as it requires an

additional mathematical dimension of analysis for each addi-

tional structure to be aligned. A general method to determine

an exact solution is possible, but would be impractical based

on time and memory constraints. Unlike SA, there are few

methods implemented for MSA and these extend existing SA

algorithms (Gerstein & Levitt, 1996; Orengo & Taylor, 1996;

Shindyalov & Bourne, 1998; Sali & Blundell, 1990; Guda et al.,

2001; Leibowitz et al., 2001; Krissinel & Henrick, 2005). The

method of Leibowitz and coworkers looks for common

geometric substructures and extends from these cores; the

other methods are extensions to all-to-all pairwise alignment.

The approach taken here is based on common cores and a

linkage combination of the pairwise results. It does not assume

that any one structure is an ideal solution to the MSA, as it

returns a weighted mean set of coordinates as the best family

alignment between proteins. The program not only returns

detail on the MSA, but also returns the multiple sequence

alignment based on structure alignment for each cluster of

aligned structures where the structure alignment is topologi-

cally equivalent to the sequence.

2. Methods

2.1. Pairwise alignment

2.1.1. Seed-point analysis. For this alignment method, the

global alignment solution can only be guaranteed to be found

if we try all combinations of C�-atom mappings for two

structures; however, this is not practical owing to the large

number of combinations possible for the atomic coordinates.

The analysis can be simplified using the small number of
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Figure 1
Overall design of superposition method.



secondary-structure vectors, but this only works with proteins

that have definite and similar secondary structures. The

CAALIGN program solves the combinatorial problem of

C�-atom alignment by searching for a filtered set of seed

points before proceeding to a full alignment analysis. It is

necessary that the generation of the filtered set has a low false-

negative rate in order to avoid missing solutions and a low

false-positive rate to reduce calculation times. This provides

the speed of alignment associated with SSE alignment, but

allows superposition independent of any local fold type. The

design of the structure-alignment algorithm is shown in Fig. 1.

2.1.2. Hashing. Seed-point analysis involves finding

reasonable starting points for further analysis. It should be fast

and not be swamped by special properties associated with

protein structure. The algorithm used is based on C� pseudo-

torsion angles (Oldfield & Hubbard, 1994) combined into

‘words’ and rearranged as a hash table. Each pseudo-torsion

angle defines a local section of fold based on the relative

orientation of four residues and summarizes the combination

of multiple ’,  and ! angles into a single parameter (Oldfield

& Hubbard, 1994; Oldfield, in preparation). Combining

multiple values using a power series expands this so that a

single unique data value represents the conformation of a

‘word’ of multiple residues. Finally, if the data are rearranged

into a hash table, then we place references to all sections of

protein polypeptide chain with the same conformation into a

single data object, allowing efficient comparison and

searching. Word hashing methods using multiple letters of a

protein/nucleic acid sequence have been used in sequence

alignment and these are termed k-tuple methods; for example,

FASTA (Pearson & Lipman, 1988) and BLAST (Altschul et

al., 1990). For a word size of N C� atoms, it is possible to define

(N � 3) C� torsion values, which are combined to give a single

hash value defined in (1), which is the sum of a power series.

hash ¼
PN�3

i¼1

Ti

P

� �
�

360

P

� �i

; ð1Þ

where Ti is torsion angle (i) in the analysis word in degrees, P

is the torsion bin precision and N is the number of C� atoms in

a word.

All values are user-defined. For all the results presented in

this paper, the analyses used N = 6 and P = 20�. A single hash

table was calculated, to which all hash values from all proteins

were added with pointer references back to the protein and

the sequence position of origin. A seed point is simply any two

references with the same hash value that are from different

proteins. Note that a range value, the number of neighbouring

hash bins included in a calculation, can be set to larger than

zero in order to handle edge effects when using hashing

algorithms. A range value of zero was used for this analysis.

As with all measures of relative conformation, hashing

produces a high concentration of one value, which represents

the �-helix. This is because the geometry of a helix has low

variance and most of these are false-positive seed points. To

solve this problem, a statistical observation was put into effect

computationally. Alignment of helical proteins invariably

results in superposition of at least one end of the SSE. Because

of this, it is not necessary to use the helical hash-bin data for

seed points. The algorithm therefore contains an optional

pass-through for all hash values and word sizes that define the

helix conformation. No difference was found when comparing

results both using and not using this pass-through, except for

analysis time. It should be noted that �-strands have variable

structure so there is no issue with hash-bin saturation.
2.1.3. Volume expansion. The seed-point analysis provides

a continuous trace with at least six C� atoms, although this

minimum length can be adjusted using the hash word size.

Alignment optimization is required to add further C� atoms to

this collection through space; that is, to add equivalent pairs of

C� atoms within a volume about the seed-point trace in order

to increase the total number of C� atoms within the alignment

without exceeding the r.m.s.d. limit. The two proteins to be

aligned are superposed based on the seed-point atoms by a

least-squares algorithm (Kabsch, 1976) with modifications

(Oldfield, 2002); atom pairs are rejected if they become

separated by this process and new pairs are added if they

become close. The cycle is repeated up to five times using a

user-defined r.m.s.d. threshold, where each cycle consists of a

least-squares alignment, an atom-addition/removal step and a

continuity check (Fig. 1).

2.1.4. Atom rejection and addition. The atom-rejection

routine checks all current atom-pair mappings after a super-

position cycle and removes those where the separation is more

than the r.m.s.d. limit. New atom pairs are added to the

alignment if their separation is less than the 1.5 times the

r.m.s.d. limit. This process stops the alignment process when

no additional atoms are added with respect to the previous

cycle or continues for a maximum of five cycles.

2.1.5. Continuity check. The continuity check is an impor-

tant aspect of the alignment expansion. This is because a pair

of proteins yet to be aligned properly can have pairs of atoms

throughout the protein pair that are incorrectly marked as

equivalent in a seemingly random fashion. This is particularly

the case for atoms that are some distance from the seed point,

because the separation between a pair of correctly mapped

atoms is directly proportional to their distance from the seed

point. Incorrectly mapped atom pairs will tie down the

alignment optimization within a false minimum. The C�

equivalence between a pair of structures also becomes

ambiguous when the r.m.s.d. limit on a particular atom posi-

tion exceeds half the separation distance between two C�

atoms. That is, the algorithm can miss equivalent C� atoms

within a polypeptide chain in one protein sequence owing to

variance in the position of the atoms determined by experi-

ment. The continuity check looks for sequential atoms and

reinforces the rule that consecutive atoms should be mapped

as equivalent between the two proteins. Any fragment of

superposed atoms of length five atoms or less is removed from

the superposition list. The chain direction of the mapped

atoms is not prescribed within the algorithm, allowing

reversed fragment alignment. Any divergent structure at the

end of aligned structure is automatically trimmed off by this

criterion. Therefore, the returned r.m.s.d. is always less than or
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equal to the user-defined r.m.s.d. limit and is generally

observed to be much smaller.

2.2. Identical solution analysis

The alignment program is designed to return either (i) the

best solution, (ii) all possible non-overlapping solutions or (iii)

all solutions between a pair of proteins. The best solution is

defined here as the result with the best target score. The

algorithm presented returns multiple solutions starting at each

seed point and will therefore generate multiple degenerate

solutions. If the best solution is required, then the current

target is tested to detect whether a new solution is better than

any known current solutions and if so it replaces the known

solution. Where the set of nondegenerate solutions is

required, the residue equivalence between the new and

current result list is determined and if more than ten residues,

the shorter is rejected. Some overlap is tolerated, as solutions

are observed where two domains align separately but not

together (for example, owing to a hinge-region change) but a

common region appears in both alignments. The analysis is

carried out by checking the alignment mapping array of the

new solution with the list of previous solutions; if there are less

than ten common residues then the new solution is appended

to the hit list, otherwise the shorter solution is deleted. If all

the solutions are required, then a new solution is just added to

the current list of known solutions.

2.3. Target functions

To optimize the superposition of a protein, it is necessary to

define a target to minimize. Protein SA requires the optimi-

zation of similarity (such as r.m.s.d.) and superposition volume

(such as the number of C� atoms). There are four target

functions implemented within the program. The first uses

alignment length as a threshold, the second is based on

alignment length as a percentage of the number of residues

within the target structure and the third is the logical AND of

the two targets. The fourth method uses implementation of the

CE score (Jai et al., 2004) defined as

Score ¼ ðr:m:s:d:=lengthÞ � ð1þ gaps=lengthÞ: ð2Þ

In all the results presented below, the CE score was the

chosen target function with a threshold set to 0.05. The CE

score is zero for an exact alignment and is proportional to the

r.m.s.d. and the number of gaps in the alignment and inversely

proportional to the alignment length.

2.4. Program output

For each pairwise alignment, the program can write the

following results.

(i) An r.m.s.d. determined from the matched C� atoms.

(ii) The number of matched C� atoms.

(iii) CE score value.

(iv) Topological analysis of the chain mapping.

(v) Sequence identity as a percentage within the structurally

aligned region.

(vi) A sequence alignment based on the structure alignment

(only if the mapping is sequential).

(vii) Two mapping arrays that define the C� mapping

between two structures.

(viii) The C� coordinates of a working molecule trans-

formed to the reference molecule for either all C� atoms or

just the aligned section.

(ix) A 4 � 4 matrix that will align the original PDB entry

with the reference structure.

2.5. Multiple structure alignment

The basic alignment algorithm has been extended to allow

MSA. Given a set of proteins, it determines subsets that form

structural clusters within the user-defined target function. This

is performed in cycles that progressively merge pairs of

structures to create structure groups, finally creating clusters

which are the solution to MSA. An outline of the algorithm

design is shown in Fig. 2.

The first cycle of the MSA consists of calculating the pair-

wise alignment matrix for all against all from a user-defined list

of proteins. This matrix is analysed to determine the list of

closest pairs of structures that are better than the alignment

threshold and, for each close pair of structures, to determine

the weighted average coordinates of the matched C� atoms.

These averaged coordinates are propagated to the next cycle

of analysis as a single object, here called a structure group. For

the remaining structures that are not part of one of the initial

aligned pairs, two options exist. The first option is that the

single structure aligns with one of the structure groups below

the threshold, but the closest partner is already taken; this

means it is part of the structure group but not the closest

member of that group. This structure is carried over to the

next level of the search with half weight. The second option

occurs if a structure does not align with any other structure

group within the defined threshold and so does not have any

partner at this level of analysis. This structure is eliminated

from further analysis. The analysis is repeated using the

averaged coordinates generated from a previous cycle and, in

practice, the number of remaining structures is approximately

halved by each cycle of the pairing analysis. The analysis is

complete when no structure groups can propagate to another

cycle of analysis. Each distinct structure group that is elimi-
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Figure 2
Overall design of multiple structure-alignment algorithm.



nated from a search cycle is termed a cluster and each cluster

can be composed of a single structure or many structures.

Coordinate combination is performed with weighting based

on the number of structures in the structure group. In this way,

structure groups generated from many structures are highly

weighted and have a known membership. Each cycle repre-

sents merging, using weights, of the inverted binary tree until

the MSA is complete. The program will also return the

structure-based sequence alignment for each cluster, as well as

the average linkage relationship, with distances between

members being based on the target function. The output

coordinates will not be equal to any one original coordinate

structure because none are likely to be an ideal solution to a

cluster.

If MSA is performed on a family of proteins, there will be a

single output cluster consisting of the average coordinates of

all the members of the family. If the list of proteins contains a

number of fold families, then the average coordinates for each

family are split off when they become a separate cluster. If a

list of nondegenerate proteins is aligned, then the output is a

set of protein fragments, independent of sequence and

connectivity, that are common within the list of proteins; for

example, a �-sheet or helix bundle.

2.6. Assessment of selectivity and sensitivity

To determine the quality of the results from the program

CAALIGN, an analysis was carried out analogous to the

published assessment of Novotny et al. (2004), which describes

a number of different tests performed by SA servers and ranks

the results by selectivity and sensitivity; the full results for a

number of alignment servers are presented at http://

xray.bmc.uu.se/~marian/servers. The analysis is split into

assessment by fold type (�, �, �–�, little secondary structure),

difficult cases, multi-domain and NMR data. Each analysis in

Novotny et al. (2004) was repeated with the program

CAALIGN with the default set of parameters. Novotny et al.

(2004) additionally describe service quality based on true

positives and false positives, where a positive result is based on

the classification by CATH topology (Orengo et al., 1997)

generated by v.2.0 and v.2.4. The CAALIGN program was run

with a target CE score of 0.05 and an upper limit on C� r.m.s.d.

of 2.0 Å. [It should be noted that there is no current structure

1awg as quoted by Novotny et al. (2004) and no archive has a

reference to this ID code. The cyclophilin structure 1awq

(Vajdos et al., 1997) was used in its stead. In addition, NMR

model structure 20 is noted as the most divergent, although

the website replaces model 20 with model 19. Analysis here

was performed with both models 19 and 20.] All procedures

described by Novotny and coworkers were repeated using the

program CAALIGN and the results in this paper are based on

calculations using the program on a 1 Ghz desktop computer

against 28 522 structures of the May 2005 PDB archive.

2.7. Implementation

All code was written in the computer language C using hash

tables for torsion hashing, structure lists to store fragments of

alignments and a binary tree construct for the clustering.

Alternate hashing functions using distances between residue

centroids and C� positions were not as sensitive as the torsion-

angle hashing described here at discriminating between

different local folds. These distance-based hashing methods

resulted in more false-positive hits during the initial local

structure screening, thus significantly slowing the overall

alignment process. Results from these distance-based hashing

algorithms are not presented. All memory allocation is

dynamic and allocated on demand at run time. Run-time

parameters are available to control the algorithm, such as hash

bin size, hash word size and sequence-continuity check, but

these have been optimized and the default values (Table 1)

were used to obtain the results presented below. The r.m.s.d.

and alignment-length targets are defined using run-time

parameters, along with the amount of the output generated by

the program. Settings are available to speed up the calcula-

tion, to use a global search or probable best solution and to

perform simple alignment and different fragment overlap

analysis.

All the analysis and times presented here are for the global

solution searching and full overlap analysis; the latter is

necessary for alignments where the sequence connectivities

are not the same. The program is CPU-bound when used for

pairwise and one-to-many calculations and generally results in

a run-time size of less than 10 Mb. MSA uses significant

amounts of memory because all alignment details must be

retained during the process of combination.

3. Results

Four different kinds of analyses were carried out as a means of

testing and proving the alignment program. The first was the

simple pairwise alignment of two proteins, which is a one-to-

one alignment. The second analysis was the extension to a

one-to-many calculation. The program simply runs through a

list of protein files and returns matches for a single structure to

any of the files in the list. The third analysis (many-to-many)

finds the family relationship within a list of proteins using

MSA.

The fourth analysis was MSA of a list of unique protein

structures prepared by application of a number of restriction

criteria (Oldfield, 2001). In this context, a unique set is defined

as a list of protein ID codes selected on the basis of structures

with good geometry that differ by more than 20% in their

sequence from all other proteins in the set. This last analysis
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Table 1
Run-time parameters and the default values used for this analysis.

Parameter Optimal value

Hash word size 6
Torsion bin size (�) 20
Maximum cycles of superposition 5
Minimum seed-chain length Hash word size
Consecutive atom check 5
Search coverage Global
Check for previous solution Full mapping check



was used to identify commonly occurring protein motifs within

protein-fold space independent of the topological sequence

connectivity of the proteins.

Finally, an assessment of the quality of the results provided

by the program was made by using the published analysis of

Novotny et al. (2004). Each of the four analysis types used in

this study was replicated with the CAALIGN algorithm

described in this article and the results were compared with

the published analysis using a number of alignment servers.

3.1. Pairwise structure alignment

The pairwise alignment between myoglobin (PDB code

1mbd; Phillips, 1980) and hemoglobin (PDB code 4hhb; Fermi

et al., 1984) was carried out with a CE score target of 0.05. Four

results were obtained for the four

different monomer subunits of hemo-

globin (shown in Fig. 3) contained

within the structure 4hhb. The �-chains

of the hemoglobin molecule produced

distinctly different alignments, judged

by the returned sequence match,

compared with the �-chains. A summary

for each alignment result shows the

length of alignment, the r.m.s.d. of the

structure alignment and the number of

residues that have an exact sequence

match over the structurally aligned

region. Since the program ignores chain

content and domain structure, multiple

alignment results are returned defined

only by the sequence order of residues

within the alignment and ordered by

target quality. The time for alignment is

less than 1 s.

3.2. Structure alignment of a protein
against the PDB

Two different proteins were aligned

against the PDB entries as of 27

September 2004. These structures

would result in either poor or no align-

ment with SSE methods because they

do not contain linear secondary struc-

ture; the second example only contains

C� atoms.

The first example, cartilage matrix

protein (PDB code 1aq5; Wiltscheck et

al., 1997), has a SCOP classification of

coiled coil and is a triple-helix structure;

it thus consists of a long curved helical

structure (Fig. 4). A total of 221 hits

were produced in the search with this

protein. The distribution of CE score is

shown in Fig. 5 and the alignments with

score below 0.016 are from coiled-coil

proteins, while those above this include

proteins that are not part of this family (as defined by SCOP

classification). This protein fold forms the basis of some fibres

and a number of solutions consist of multiple hits that lie along

the fibre strand, such as 1c1g (Whitby & Phillips, 2000) and

1if3 (Caffrey, 2001).

The structure pectate lyase (PDB code 1pcl; Yoder et al.,

1993; Fig. 6) from Erwinia chrysanthemi is classified in SCOP

as a single-stranded right-handed �-helix and has only C�

atoms. The search with this structure produced the 45 unique

protein hits shown in Fig. 7, although some of the proteins

resulted in multiple alignments (not shown). There are three

classes of alignment hits from this analysis. Five hits (1pcl,

Yoder et al., 1993; 1ooc, Dehdashti et al., 2003; 1pe9,

Dehdashti et al., 2003; 1jrg, Thomas et al., 2002; 1jta, Thomas et
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Figure 3
Results for the pairwise structure alignment of myoglobin (PDB code 1mbd; Phillips, 1980) and
hemoglobin (PDB code 4hhb; Fermi et al., 1984). The numbering shown is the residue ID number
for structure 4hhb, which is consecutive from 0 to 515, and the four different solutions are ordered
by CE score, resulting in the chains ordered by hit as D, A, C and B. The sequences are shown so
that upper-case characters indicate the regions that superpose by structure and lower-case
characters indicate the regions that are not aligned. No sequence alignment has been performed on
the regions not aligned by structure. The ‘|’ character indicates the residues that have identical
sequence and the sequence homology is only defined for those residues that align by structure
(upper-case characters).



al., 2002) have low r.m.s.d.s, more than 330 residues aligned

and a sequence similarity of more than 60%. The second set of

alignments has an r.m.s.d. around 1.2 Å, an alignment length

of about 200 residues for the core �-helix and a sequence

similarity of around 30%. The last set consists of structures

that align over 90 residues with an r.m.s.d. of about 1.5 Å and

have a sequence similarity less than 20%. Many of these

structures do not appear in the SCOP database at the current

time, although those that do are classified as right-handed

�-helix. There is significant variation in the shapes of the

aligned structures and thus between the three classes of hits.

3.3. Multiple structure alignment

MSA of a family of proteins is demonstrated on a set of

kinase structures that were originally used by Shindyalov &

Bourne (1998) as an MSA test set and then used by Novotny et

al. (2004) as a test set for the MSA servers (Fig. 8). The MSA

calculation was repeated using the CAALIGN program with a

CE target of 0.05. The sequence alignment based on MSA

cluster 1 is shown in Fig. 9. The secondary-structure assign-

ment shown was taken from the PDB file 1atp (Zheng et al.,

1993) and is included above each section of alignment, where

‘H’ indicates �-helix, ‘S’ indicates sheet structure and ‘.’

indicates no assigned secondary structure. The aligned regions

within the protein superposition do not correlate well with the

secondary-structure content of 1atp, indicating that algorithms

based on SSE alone would struggle to maximize the alignment

within the set of proteins.

3.4. Fold-fragment analysis of a unique set of proteins

The program CAALIGN was used as a method of gener-

ating common fragments of super-secondary structure from a

unique set of protein structures (Oldfield, 2001) generated

from the PDB in January 1999. Data were selected as math-

ematically determined (Oldfield, 2002) domain fragments

using the following criteria: (i) solved by protein crystallo-

graphy after 1983, (ii) all-atom models of protein with more

than ten residues, (iii) no more than 10% bad Ramachandran

angles, (iv) a resolution limit of 2.5 Å or better and (v) an

exact sequence similarity of less than 80%. 2320 fragments of

protein structures were aligned using the clustering algorithm

of CAALIGN at various minimum alignment lengths. Typical

times were of the order of 15 h for each analysis for the 3.6

million alignments. This consisted of 11 cycles of reduction

starting from the 2320 � 2320 square alignment matrix, where
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Figure 6
Ribbon diagram of the structure 1pcl (Yoder et al., 1993). The structure is
coloured from red at the N-terminus through to blue at the C-terminus.

Figure 5
Distribution of CE score between 1aq5 (Wiltscheck et al., 1997) and
entries in the PDB (27 September 2004).

Figure 4
Ribbon diagram of structure 1aq5 (Wiltscheck et al., 1997). The structure
is coloured from red at the N-terminus through to blue at the C-terminus.



each cycle approximately halved the

size of the matrix. This gave an average

alignment time of about 0.02 s for pair-

wise alignment on a 1 GHz Pentium III

PC running Red Hat Linux 7.2; it

required 150 Mb of runtime physical

memory. Details of the data prepara-

tion, an older ad hoc clustering method

and results, along with their use as

molecular-replacement targets, are

described in Oldfield (2001). Four

examples of structure fragments are

shown (Fig. 10) and fragment lists

generated from this analysis are avail-

able from http://www.ysbl.york.ac.uk/

~tom/folds/index.html.

3.5. Assessment of sensitivity

Calculations were performed to allow

direct comparison with the results of

Novotny et al. (2004). Details of the

alignment results of cyclophilin are

shown in Table 2 and an overall

summary for the different fold types is

shown in Table 3. These results indicate

that the alignment program described

here is excellent at determining the hits

with a 100% overall rate based on the

criteria used in the study of Novotny et

al. (2004). Domain analysis, variability

analysis using NMR data and C�-only

tests were all repeated using the criteria

set out in the paper by Novotny and

coworkers. The results (Table 4) indicate that the CAALIGN

algorithm produces results that are equivalent to the very best

of the structure-alignment servers for all structure types. On

the other hand, an analysis using 11 difficult similarities

between pairs of proteins taken from Fischer et al. (1996) was

less successful, resulting in only four matches between protein

pairs.

Considering the domain-analysis results as a test, the

algorithm replicated the results of Novotny et al. (2004),

yielding hits for all combinations of one to four domain

superpositions. Although the program passes the Novotny

test, it should be noted that the algorithm could miss some hits

in large multi-domain proteins where differences in packing of

the domains could distort the entire structure, perhaps owing

to hinge motion, for example. In this case, multiple non-

overlapping solutions would be found for each of the domains

rather than a single solution; this is considered an advantage as

it provides additional information over and above a single

overall low-quality alignment. With reference to domain

structure, the algorithm has three modes of handling

substructure hits. The default mode is to determine the set of

‘non-overlapping’ solutions, but with an overlap tolerance of
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Figure 8
A linkage diagram showing the relationship (by length of alignment)
between a set of kinase structures. The x ordinate is the alignment length,
where zero is no alignment. Clustering was generated from the matrix of
structure-alignment lengths for the all-against-all kinase alignment and
returned by the MSA algorithm. Those structures close together and with
a bifurcation to the right of the diagram are most structurally similar,
while progression to the left of the diagram shows family relationship as
judged by alignment length.

Figure 7
Hit list created by searching the PDB against the structure of 1pcl (Yoder et al., 1993); multiple hits
are not included within this list.



ten residues to allow hinge-region overlap. The other options

are to return just the best solution or all solutions.

A similar test based on an NMR structure shows that the

program is only marginally affected by model variation, as it

produces very similar results for all of the seven search

structures (Table 4). 1gdc (Baumann et al., 1993) is always

returned as the first hit, while 2gda (Baumann et al., 1993) is

always returned as the second hit. The number of true posi-

tives is slightly different and in only one case (model 20, the

most nonrepresentative) did the first false positive appear

above the last true positive hit. Unlike the methods based on

secondary structure, this algorithm is not sensitive to the
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Table 3
Results of structure alignment as a function of the different secondary-
structure types.

The numbers in parentheses are the total numbers of test structures. The first
row of results indicates the number of search structures found that include
other members of the search structures and the second row gives the number
of results that included any positive hit, which was the criteria used by
Novotny et al. (2004)

� (19) � (19) Mixed (15) Few SSE (8) Overall (%)

Search list 18 18 14 8 95
Any 19 19 15 8 100

Table 4
Results of structure-alignment sensitivity as a function of variability in
target structure using different NMR model structures from 2gda
(Baumann et al., 1993).

1gdc (Baumann et al., 1993) is the energy-minimized structure and model 20 is
the most dissimilar. The value in parentheses in the first false positive column
is the number of false positives.

1gdc rank 2gda rank
Other true
positive

First false
positive

1gdc 1 2 19 22 (2)
2gda-2 1 2 15 None
2gda-7 1 2 17 20 (1)
2gda-11 1 2 15 None
2gda-18 1 2 19 22 (1)
2gda-19 1 2 19 21 (2)
2gda-20 1 2 12 14 (10)

Figure 9
The aligned sequences of 12 kinase protein structures aligned by MSA as
cluster 1 from a MSA of 19 protein structures. The secondary structure of
1atp is shown at the top of each alignment, where ‘H’ indicates helix and
‘S’ indicates a strand that is part of a sheet. Upper-case characters
indicate the alignment by structure; lower-case characters are used for
sequence positions that are not aligned. A hyphen marks insertions and
regions not structurally aligned are not sequence aligned. The N- and
C-terminal unaligned regions were truncated.

Table 2
Results of an analysis of cyclophilin test structures.

c.f. Table 4 of Novotny et al. (2004). The table gives the rank of the hit to the
target, the number of other true-positive (TP) hits and the rank of the first
false positive (FP), with the number of false positives in brackets, defined as
not CATH (Orengo et al., 1997) topology = 2.40.100. Time is the compute time
for a 1 Ghz desktop computer to complete the calculation on 28 532 proteins.

Query Rank (self) Other TP Rank of FP Time (min)

1awq 1 62 None 34
1a33 1 66 None 38
1cyn 1 65 66 (11) 38
1qoi 1 65 67 (1) 39
1lop 1 64 66 (13) 66
1qng 1 64 66 (3) 82
2rmc 1 66 68 (2) 39
1dyw 1 64 66 (4) 77
1ihg 1 65 67 (1) 40



variation in NMR models that have reduced secondary-

structure content as discussed by Novotny et al. (2004).

4. Discussion

The program CAALIGN returns a protein-structure align-

ment based on C�-atom positions between a pair of proteins,

between one and many proteins and among structure clusters

from a list of proteins. The program is not dependent on the

secondary-structure content of the protein and only requires

the C�-atom positions for alignment. This allows the use of the

algorithm to identify nonclassical structures within proteins

that cannot be described by a single vector. The sequence

order of the aligned regions of proteins is not important for

alignment, although this information is returned as part of the

result. In this way, the program can find small fragments of

recurrent local structure within proteins, such as loops

(Fig. 10a). This allows study of the sequence dependence of

these recurrent features as the algorithm returns a sequence

alignment from the structure alignment for both the pairwise

and MSA calculations. The program is also designed to return

all non-overlapping alignments between a pair of proteins,

although an option is provided to return just the best solution.

The calculation speed (Table 2) does not compare favorably

with server times reported in the literature, as these are

presumably optimized for rapid

response with clusters of high-perfor-

mance computers. Rather, the original

papers describing the programs were

checked for analysis of performance.

The multiple structure alignment of a

nondegenerate list of 2320 protein

fragments required 150 Mb of run-time

memory and took 15 h on a 1 Ghz

Pentium III PC running Red Hat Linux

7.2 to complete the approximately 3.6

million alignments. The mean calcula-

tion time of 0.02 s is much quicker than

quoted for other atomic alignment

methods and is not far off that of SSM

(Krissinel & Henrick, 2004), the

benchmark alignment service based on

secondary-structure elements. Since the

CAALIGN program is based on atomic

alignment, it has a superior level of

sensitivity and is less dependent on

secondary-structure type than all other

methods.

MSA is unbiased and does not

assume that any one set of coordinates

is representative of a cluster, since it

generates an ideal coordinate solution

for each cluster of coordinates. MSA is

entirely automated and returns details

of the members of the clusters, clustered

coordinates, matrices of alignment

length/r.m.s.d. values and the sequence-

alignment detail based on structure alignment for each cluster.

When used on a unique set of proteins, the analysis represents

true data mining, where a set of common fragments of folded

structure are determined without fold targets defining the

search criteria. If the full PDB were used in such an analysis,

then the program would determine clusters of identical and

near-identical structures as the primary features of interest. To

successfully drill down into any data, we must remove known

relationships or they will dominate and obscure new infor-

mation. This type of algorithm, where the target of analysis is

frequency of occurrence, does not require knowledge of the

meaning of the data (Hand et al., 2001).

The evaluation criteria for sensitivity of alignment used by

Novotny et al. (2004) show that CAALIGN compares well

with an array of 11 structure-alignment servers, giving an

overall success rate of 100% (Table 3). The structures 1vmo

(Shimizu et al., 1994), 1fok (Wah et al., 1997) and 1plq

(Krishna et al., 1994) did not match any structure within the

Novotny test set, but did return a small number of positive

matches in the PDB with the same CATH (Orengo et al., 1997)

code. The algorithm is not dependent on structure type and

performed equally well in all four sensitivity tests. Searching

for structure superposition with a CE score of 0.05 always

gives the identity hit first and the true positives at the top of

the hit list. It also usually returns a small number of false
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Figure 10
Four common motifs found from MSA of a unique list of proteins selected by sequence difference,
date, resolution, X-ray technique and quality.



positives (defined by CATH topology; Orengo et al., 1997). At

higher values of the CE score, the many false-positive results

represent super-secondary structure matches including turn

structures (see examples in Fig. 10). The algorithm is ideally

suited for finding turn-structure superposition, with many

common combinations of helix/strand–turn–helix/strand

structures being found at higher CE score. The analysis of

common loop structure and residue-type dependence within

these turn structures, based on structure alignment, is the

subject of ongoing research.

The evaluation shows that the alignment is not sensitive to

the variability of NMR structures and works equally well with

any of the models generated by an NMR experiment. Like

other atom-based algorithms, it only requires the C� atoms to

form an alignment and does not require derived information

such as hydrogen-bond patterns or accurate representation of

local structure before an alignment is determined. It can be

expected that the algorithm could be readily adapted for use

with nucleic acid structures, where vector methods cannot be

used.

The difficult-case example results in only four hits out of the

11 aligned pairs. It is probably to be expected that an align-

ment method based on C� coordinates will not be good at

aligning difficult cases because the coordinate superposition is

limited to r.m.s.d. target values of 2 Å owing to ambiguity of

atomic equivalence; in this case, the C�—C� pseudo-bond

distance. The continuity check provides some filtering of

mismatches and extends the alignment limit to greater than

2.0 Å resolution, but experience has shown that the alignment

sensitivity begins to falls above this limit. Vector methods are

able to identify larger variance in fold packing because the

atom superposition they determine is by inference from

secondary-structure elements. Additionally, it is a little slower

than vector methods when compared with the equivalent

hardware. The aim of the new algorithm was to create a very

sensitive search that is capable of aligning small volumes of

protein structure independent of any secondary-structure

specification, relying only on C� positions. This allows research

leads that are not possible with other alignment programs,

such as the analysis of loop structure in proteins and the

analysis of the sequence dependence of these loops. The

ability to carry out MSA of very large numbers of unique

structures allows detailed analysis of the conformational space

of protein structure. Both of these types of analysis are the

subject of ongoing research and this cannot be undertaken

with any of the current structure-alignment algorithms.

5. Availability

The CAALIGN program was developed during 2000 to

provide a method to carry out discovery-driven data analysis

(data mining) for protein folds and has been used stand-alone

or as part of the Accelrys package. The algorithm has been

used to generate fragment libraries (http://www.ysbl.york.ac.uk/

~tom/folds/) for molecular replacement and also to provide a

means to carry out research into protein structure (Barry

Grant, DPhil thesis, in preparation). The algorithm is under

continued development by Accelrys (article forthcoming) in a

modified form and is available from Accelrys as the program

3DMA.
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the program and providing constructive comment with regard

to parameterization. Detailed comparisons to the programs

DALI (Holm & Sander, 1997) and CE (Shindyalov & Bourne,

1998) form part of his thesis. I would like to thank Leo Caves

and other members of the YSBL for suggestions and much

testing of the program. Figs. 4, 6 and 10 were generated using

version 2 of the program AstexViewer (Hartshorn, 2002) and

Figs. 5 and 8 were generated within the program SQUID

(Oldfield, 1992). I also thank the referees and coeditor for
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